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Abstract

We study a general class of consumption-savings problems with recursive preferences.

We characterize the sign of the consumption response to arbitrary shocks in terms of

the product of two sufficient statistics: the elasticity of intertemporal substitution be-

tween contemporaneous consumption and continuation utility (EIS), and the relative

elasticity of the marginal value of wealth (REMV). Under homotheticity, the REMV

always equals one, so the propensity of the agent to save or dis-save is always signed by

the relationship of the EIS with unity. We apply our results to derive comparative stat-

ics in classical problems of portfolio allocation, consumption-savings with income risk,

and entrepreneurial investment. Our results suggest empirical identification strategies

for both the value of the EIS and its relationship with unity.
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1 Introduction

A growing body of theoretical literature assumes that investors have recursive preferences,

particularly the constant relative risk aversion, constant elasticity of intertemporal substitu-

tion specification studied in Epstein and Zin (1989) and Weil (1989). This utility function

allows two different parameters (relative risk aversion and elasticity of intertemporal sub-

stitution) to separately govern the attitude towards risky gambles and the willingness to

smooth consumption over time, which are mechanically linked for additively separable con-

stant relative risk aversion (CRRA) preferences.

In applied theoretical models with Epstein-Zin preferences and generalizations thereof,

there remains a considerable debate with respect to “reasonable” choices for the elasticity of

intertemporal substitution (EIS), which is conventionally defined in terms of a comparative

static: the percentage change in consumption growth induced by a one percent increase in

the rate of return on investment. This debate persists in part because empirical estimates

of EIS vary considerably from being larger than one to significantly negative.1

This lack of consensus regarding the magnitude of EIS is troubling since the relationship

between EIS and unity plays a central role in affecting the dynamics of many theoretical

models in both quantitative and qualitative terms. For example, in the Bansal and Yaron

(2004) long-run risk model, when EIS > 1, investors are willing to pay a premium to hedge

against lower future economic growth rates. The wealth-consumption ratio is pro-cyclical,

the equity premium is high, and the risk-free rate is low and stable. Setting EIS < 1 changes

many basic intuitions for the model and often reverses each of these properties.2 Moreover,

Kaplan and Violante (2014) find that EIS > 1 is crucial for getting households to hold large

illiquid positions and thus to quantitatively match the consumption response to tax rebates.

Assuming EIS > 1 also has striking implications for the response of asset prices to changes

in uncertainty.3

This paper develops robust comparative statics for an investor’s optimal consumption-

savings decision in a general portfolio problem with recursive preferences over contempora-

neous consumption and a certainty equivalence functional of their continuation utility. We

generalize the definition of EIS to this setting, where, in contrast to the more conventional

definition of EIS (and target estimand in the empirical literature), our definition depends

1See Havranek, Horvath, Irsova, and Rusnak (2015) for a review.
2Similar changes occur to asset prices and quantity dynamics in production-based models (Kaltenbrunner

and Lochstoer, 2010; Croce, 2014).
3In endowment economies, Bansal and Yaron (2004) and Barro (2009) find that asset prices fall in response

to increased volatility and disaster risk when EIS > 1 and rise otherwise. Drechsler and Yaron (2011) and
Di Tella (2017) argue that EIS > 1 is crucial for explaining the variance risk premium and balance sheet
recessions, respectively.
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only on preferences and makes no specific assumptions on budget constraints and investment

opportunities. In the Epstein-Zin case (which nests the standard CRRA expected-utility

model), our definition always corresponds with the structural parameter. By contrast, the

more conventional definition may or may not correspond with the structural parameter de-

pending on additional details of the budget constraint of the consumption-savings-investment

problem.4 Our specification allows for essentially unrestricted flexibility in risk tolerance,

impatience, willingness to substitute over time, ambiguity aversion, riskiness of returns, in-

vestment opportunities, and both state and time variation in all of these factors.

We provide three main results, which establish a tight link between our general notion

of the EIS and the consumption responses to shocks to continuation values. First, we show

that the sign of the consumption response to shocks is characterized by the relationship with

unity of the product of two sufficient statistics: the EIS, capturing willingness to substitute

consumption over time; and the relative elasticity of the marginal value of wealth (REMV),

which is the ratio between the elasticity of the marginal value of wealth and the elasticity of

the value of wealth. This statistic captures the size of wealth effects induced by the shock.

Hence, consumption increases in response to a positive shock to continuation values if and

only if EIS× REMV ≤ 1.

Second, we show that if the agent’s preferences are homothetic, then the REMV is iden-

tically equal to one. Thus, the signs of consumption responses with homothetic preferences

are characterized precisely by the relationship of the EIS with unity.

Third, using techniques from the literature on monotone comparative statics (Milgrom

and Shannon, 1994), we provide general sufficient conditions on the agent’s preferences for

any possible optimal consumption function to be globally increasing or decreasing with re-

spect to arbitrary shifters of continuation utility. Our sufficient condition shows that if the

product of suitably generalized global counterparts to the EIS and REMV are always less

than unity, then consumption is increasing in shifters that increase continuation value.

The intuition for these results is best exemplified in a simple two-period setting without

risk, which forms the first section of the paper. Concretely, consider an agent choosing

whether to consume today or tomorrow in the presence of a risk-free asset that they can

freely trade. The sign of the consumption response to an increase in the risk-free rate

depends on two factors. First, if the interest rate increases, then the opportunity cost

of contemporaneous consumption increases, which induces the consumer to wish to save

more and increase continuation utility via a substitution effect. If continuation utility is a

4For example, consumers may face hard borrowing constraints which bind with positive probability. This
induces a wedge in the consumption-savings problem that leads to a difference between the “standard”
measure of EIS and ours, even when preferences themselves are homothetic.
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gross substitute for consumption today (i.e., EIS > 1), then this effect pushes the agent

to substitute consumption today for more continuation utility. Conversely, if continuation

utility is a gross complement for consumption today (i.e., EIS < 1), then greater continuation

utility crowds in more consumption today. Second, if the agent earns future endowment

income, then the change in interest rates reduces the value of their future endowment. This

reduces the magnitude of the wealth effect induced by changes in interest rates and makes

the agent more predisposed to cut consumption (i.e., REMV > 1). Thus, consumption falls

under the less stringent condition that EIS × REMV > 1. Our general results clarify that

this simple intuition is fully general: one need only work out the EIS and the REMV to sign

consumption responses to any shock.

We apply our results to understand how consumption responds to various shocks in three

applications to (1) portfolio allocation, (2) consumption-savings with labor income risk,

and (3) entrepreneurial investment. To operationalize our theoretical results, we show in

our three settings that continuation values are adversely affected by: (1) increases in risk

aversion, reduced investment opportunities, lower returns to investment, riskier returns to

investment, diminished continuation value of consumption, and increased ambiguity aversion;

(2) lower labor income, increased income risk, and reduced opportunities to hedge income

risk; (3) less productive production technology, higher rental rates for capital and labor,

higher depreciation rates, riskier depreciation rates, and higher capital tax rates. Thus, in

each case, our general theoretical results can be applied directly to show that consumption

decreases in response to these changes if and only if EIS×REMV ≤ 1. We moreover provide

sufficient conditions for each environment to be homothetic, in which case consumption

decreases if and only if EIS ≤ 1.

Finally, we provide practical guidance on how to leverage these comparative statics to

test whether EIS ⋛ 1. Concretely, by characterizing the sign of the consumption response

to shocks in terms of the relationship of the EIS with unity, we achieve sign-identification of

EIS− 1 by observing the sign of the consumption response to shocks. Thus, our results may

allow empirical researchers to exploit variations in multiple variables beyond risk-free returns

to estimate the sign of EIS−1 in a model-free manner simply by observing whether an agent

consumes more or less. This is important because the standard estimand of the elasticity

of the growth rate of consumption to risk-free rates (the standard empirical measure of the

EIS) need not coincide with the structural definition of the EIS under realistic frictions, such

as borrowing constraints. Moreover, while these tests only partially identify EIS (i.e., its

relationship with unity), with additional structural assumptions one can use our formulas

for consumption responses to point-identify EIS.
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Related Literature. Some of the theoretical implications of the relationship between EIS

and one have appeared in the literature. For example, working with CRRA preferences, many

classic papers have found that riskier environments increase or decrease savings depending on

whether relative risk aversion is greater or less than one.5 Our results are considerably more

general as they place no parametric structure on the environment. Moreover, by working

with recursive preferences, we clarify that these results are driven exclusively by EIS, not risk

aversion, extending an intuition developed in Weil (1993) and the approximate solutions of

Campbell (1993) and Campbell, Giglio, Polk, and Turley (2018).6 We allow for considerably

more flexibility in how risk aversion, time discounting, and even future EIS evolve over

time, and also allow for preferences that incorporate ambiguity aversion (as modeled in, e.g.,

Epstein and Schneider, 2003; Hayashi, 2005; Hayashi and Miao, 2011), realistic life cycle

features, and various kinds of investment opportunities.

Our paper is also related to Epstein (1988), who studies the asset pricing implications of

recursive preferences in a representative-agent endowment economy. He derives comparative

statics results, which depend on the magnitude of EIS relative to unity. Our paper is different

because we focus on the response of consumption behavior to arbitrary shocks and impose

much weaker restrictions, allowing for general recursive preferences and stochastic processes.

More recently, in independent work, Iachan, Nevov, and Simsek (2021) show that expanding

portfolio choice (which they refer to as financial innovation) increases savings if EIS is greater

than one. Our analysis is complementary since we put little structure on the model and

consider many other types of comparative statics, whereas they focus on one channel but also

study general equilibrium implications. An advantage of the level of generality considered

here is that, in addition to allowing for more flexibility than existing theoretical results, we

can summarize many key predictions about savings behavior with recursive preferences in a

simple, self-contained way that also has general implications for how applied researchers can

set- and point-identify EIS from different shocks in different settings.

Outline. The paper proceeds as follows. Section 2 develops a simple two-period exam-

ple to illustrate our main results. Section 3 describes our general model and main results.

Section 4 applies our results to problems of portfolio allocation, consumption-savings, and

entrepreneurial investment. Section 5 describes the implications of these results for identifi-

cation and estimation of EIS. Section 6 concludes.

5See, for example, Phelps (1962, Section 6(ii)), Levhari and Srinivasan (1969, p. 161), Merton (1969,
p. 254), Sandmo (1970, p. 358), and Rothschild and Stiglitz (1971, p. 70).

6Weil (1993) considers an optimal consumption-savings problem with recursive preferences that exhibit
constant elasticity of intertemporal substitution (CEIS) and constant absolute risk aversion (CARA). The
relevant comparative statics appears in Section 2.5 of that paper, where he assumes income is independent
and identically distributed (IID).
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2 EIS and Consumption: A Two-Period Example

To exemplify and build intuition for our definition of EIS and main comparative statics

results, we begin with a simple two period example without uncertainty. Time is indexed

by t ∈ {1, 2}. The agent is endowed with et ∈ R+ units of the consumption good in each

period and can freely buy and sell a risk-free asset in period 1 with gross return Rf ∈ R++.

Thus, the agent faces the lifetime budget constraint

c1 +
c2
Rf

≤ e1 +
e2
Rf

.

In period 2, if the agent consumes c2 ∈ R+, their utility is simply u2(c2) = c2. In

period 1, the agent has recursive preferences over period 1 consumption c ∈ R+ and period

2 utility v ∈ R+ represented by the aggregator f(c, v). To avoid corner or multiple solutions

we assume that f is twice continuously differentiable, strictly increasing in each argument,

strictly quasi-concave, and satisfies the Inada condition.

In this setting, we define the EIS of f as7

ψ = −
d log

(
c
v

)
d log

(
fc
fv

) , (1)

where fx = ∂f
∂x

is the date 1 marginal utility of x ∈ {c, v}.8 The EIS captures the sub-

stitutability between contemporaneous consumption and future utility. Indeed, under our

assumption that the agent can trade a risk-free asset, the agent’s first-order condition for

optimal consumption implies that fc
fv

= Rf . Thus, as v = c2, the EIS is equivalent to the

commonplace definition of the EIS as the elasticity of consumption growth to changes in the

risk-free rate:

ψ = −
d log

(
c1
c2

)
d logRf

. (2)

Critically, our definition of the EIS (1) depends solely on the agent’s preferences, while (2)

requires restrictions on investment opportunities and preferences that might be violated in

practice: (1) preferences could be nonhomothetic, i.e., utility might not be a linear function

of period 2 consumption or (2) the household may face borrowing constraints.

7The numerical value of EIS is invariant to a monotonic transformation of the utility function (aggregator).
To see this, let g(c, v) = F (f(c, v)), where F is strictly increasing and differentiable. Then by the chain rule
we have gc = F ′fc and gv = F ′fv, so gc/gv = fc/fv.

8Since log(fc/fv) is a function, not a variable, the notation (1) is not rigorous. Formally, given an
arbitrary point (c, v), let s = log(fc/fv), and define c(s) and v(s) that jointly solve f(c(s), v(s)) = f(c, v).

Then, the EIS at a particular point is ψ = −d log(c/v)
ds .
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Our main theoretical results characterize the consumption response to arbitrary shocks

in terms of the agent’s EIS and the wealth effects induced by these shocks. To parameterize

such shocks in this example environment, suppose that the agent faces a preference shifter

ρ ∈ R+ such that the agent’s time 1 utility is given by f(c, ρv). The following proposition

characterizes how consumption in period 1 is affected by changes in (1) the risk-free rate

and (2) the value of continuation utility.

Proposition 1. The sign of the consumption response to a change in continuation value (at

ρ = 1) is given by

sgn

(
∂c

∂ρ

)
= sgn(1− ψ). (3)

Moreover, the sign of the consumption response to a change in the risk-free rate is given by

sgn

(
∂c

∂Rf

)
= sgn(1− εψ), (4)

where ε =
e1−c+e2/Rf

e1−c ≥ 1.

Proof. See Appendix A.1.

Thus, the effect on consumption of a change in continuation values is exactly signed by

the relationship of the EIS with unity. In particular, if and only if ψ > 1, when continuation

values increase, consumption today decreases. Intuitively, when ψ > 1, the agent is willing to

substitute consumption today for the now relatively more valuable consumption in the future.

However, were ψ < 1, the agent would increase consumption today because consumption

today and consumption tomorrow are sufficiently complementary.

The response of consumption to changes in the interest rate depends on both the EIS

and the wealth effects that the change in interest rates induces. These wealth effects are

summarized by the ratio of lifetime wealth to contemporaneous wealth ε. When the agent

receives no additional wealth in the future, e2 = 0, this wealth effect is neutral, ε = 1,

and the consumption response to an interest rate shock is signed by the relationship of the

EIS with unity. However, when the agent receives wealth in the future, an increase in Rf

reduces the value of the agent’s endowment in period 1 as borrowing forward that wealth to

period 1 is more expensive. This causes the agent to experience a negative wealth effect in

period 1, which makes the agent more predisposed to cut period 1 consumption. As a result,

consumption now falls under the less stringent condition that ψ > 1
ε
. In our general model,

ε is the REMV, which we previewed in the introduction and will shortly define formally.9

9For a proportional shock to continuation values, the REMV equals one, which is why ε does not explicitly
appear in (3).
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Figure 1: Response of consumption to Rf (or ρ) with Epstein-Zin preferences.

As a concrete example of the above, consider the Epstein-Zin (or CES) aggregator

f(c, ρv) =
(
(1− β)c1−1/ψ + β(ρv)1−1/ψ

) 1
1−1/ψ ,

where 0 < β < 1 is the discount factor. Using calculus (see Proposition 6 in Appendix A.7

for a general solution in a dynamic environment), we obtain

(c, ρv) =

(
(1− β)ψ(e1 + e2/Rf )

(1− β)ψ + βψ(ρRf )ψ−1
,
βψ(ρRf )

ψ(e1 + e2/Rf )

(1− β)ψ + βψ(ρRf )ψ−1

)
.

Figure 1 plots the budget sets, indifference curves, and optimal consumption bundles for

different values of the interest rate (0%, 25%, and 50%) when e2 = 0 and β = 1/2. Different

columns correspond with different choices of EIS, ψ = 1/2, 1, 2.

In the middle panel, EIS equals one, and the aggregator is Cobb-Douglas. Hence, the

agent spends a constant fraction of wealth on each good, so consumption is invariant to Rf .

When EIS is less than unity (left panel), consumption and continuation utility are gross

complements, so the agent consumes more of both goods. The opposite is the case in the

right panel, in which the two goods are gross substitutes as the EIS exceeds one.

Our main theoretical results generalize, to dynamic and stochastic environments with

much less structure, this basic insight that the consumption response to any shock to con-

tinuation values is characterized by the relationship between the product of the EIS and

wealth effects (ε) with one. This allows us to derive comparative statics in applications and

provide insight into strategies by which the EIS might be robustly estimated.
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3 Model and Main Results

We now introduce our general framework and derive our main results relating the EIS with

consumption responses to shocks.

3.1 Model Primitives

Time is discrete, finite, and indexed by t ∈ T = {0, 1, . . . , T}. All random variables are

defined with respect to a probability space (Ω,F , P ). A single agent has preferences defined

over random consumption plans {ct+s}T−ts=0 for all t ∈ T that are constructed recursively

as follows. Terminal utility is UT = uT (cT ) for some uT : R+ → R+. Given a random

continuation utility Ut+1 ∈ U , the time t recursive utility is given by

Ut = ft (ct,Mt (Ut+1)) ,

where ft : R+ × R+ → R+ is upper semi-continuous and aggregates consumption and a

certainty equivalence functional of the distribution of the continuation value Mt : U → R+.

Suppose that the agent has financial wealth wt ∈ R++ at time t. The agent can invest this

wealth in portfolios θt ∈ Θt. When the agent invests w− c in portfolio θt, their continuation

wealth next period is the random variable Wt+1(w− c, θt). Define the value function at date

t given wealth w as Vt(w). By the principle of optimality and backward induction, the value

function is given by the Bellman equation

Vt(w) = sup
c∈[0,w],θt∈Θt

ft (c,Mt (Vt+1 (Wt+1(w − c, θt)))) .

To index our comparative statics, we parameterize the aggregation functional, the continua-

tion wealth function, and the subjective distribution over continuation valuations by a scalar

parameter α ∈ [0, 1] and define the continuation value function vt : R+ × [0, 1] → R+

vt(w, α) = sup
θt∈Θαt

Mα
t

(
V α
t+1(W

α
t+1(w, θt))

)
(5)

with the normalization that vt(w, ·) is an increasing function for all w ∈ R+. Suppressing

time subscripts, we can express the consumption-savings problem of the agent as

sup
c∈[0,w]

f(c, v(w − c, α)) (6)

and define the pair E = (f, v) as an environment.

8
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Remark 1 (Dynamic Consistency and Infinite Horizon are Inessential). All of our theoreti-

cal results hold even if the agent does not expect to optimize from date t+1 onward. That is,

they may be time-inconsistent or even not necessarily in control of any future decisions. In

this setting, we can still define vt as in (5) with Vt+1 replaced by Ut+1 and our analysis follows

as written. This also makes clear that the agent’s problem could have infinite horizon. So

long as the agent’s value function exists, we can still study the consumption-savings decision

of the agent by studying (6). △

Toward understanding the consumption response to shocks using local perturbations, we

define environments in which this approach is generally possible as (strongly) regular:

Definition 1. The environment E = (f, v) is regular if:

(1) The aggregator f is strictly increasing and twice continuously differentiable with pos-

itive cross-partial derivative.

(2) The continuation value function v is strictly increasing and twice continuously differ-

entiable.

If, in addition, the following is satisfied, then the environment is strongly regular :

(3) All solutions to (6), c : R+ × [0, 1] → R+, are such that c(w, α) ∈ (0, w).

We provide sufficient conditions in terms of primitives {uT , (Ω,F , P ), {ft,Mt,Θt,Wt}t∈T }
such that the induced environments {(ft, vt)}t∈T are strongly regular for almost all levels of

wealth in Lemma 4 in Appendix B.

3.2 Main Results: The EIS and Consumption Responses to Shocks

Toward characterizing the consumption response to shocks, we first define both the concepts

of the EIS and REMV. The EIS is the elasticity of substitution between current consumption

and future continuation value:

Definition 2 (Elasticity of Intertemporal Substitution). The EIS is

ψ = −
∂ log( cv )

∂α

∂ log( fcfv )
∂α

, (7)

where all partial derivatives are evaluated at c.

The REMV is the ratio between the elasticity of the marginal value of wealth with respect

to the shock and the elasticity of the value of wealth with respect to the shock:

9
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Definition 3 (Relative Elasticity of the Marginal Value of Wealth). The REMV is

ε =
∂ log vw
∂α

∂ log v
∂α

, (8)

where all partial derivatives are evaluated at c.

Intuitively, the REMV measures the impact of any wealth effects in the consumption

response to shocks while the EIS measures substitution effects.

In strongly regular environments, the following result establishes a formula for the con-

sumption response to changes in the continuation value. It moreover shows, under the

benchmark condition that the continuation value of wealth is concave, that the sign of the

consumption response to a positive shock to continuation value is characterized by the rela-

tionship of the product of the EIS and REMV with unity.

Theorem 1. If the environment (f, v) is strongly regular and vww ≤ 0, then

sgn

(
∂c

∂α

)
= sgn(1− εψ). (9)

Proof. See Appendix A.2.

We prove this result by applying the implicit function theorem to the necessary first-order

condition for optimal consumption and re-expressing the resulting equation in terms of the

EIS and REMV. This yields the following formula for the consumption response to shocks

(which holds even when continuation value functions are not concave in wealth):(
1

c
+
vw
v

− ψ
vww
vw

)
cα =

vα
v
(1− εψ). (10)

It follows immediately from (10) that when the continuation value function is concave in

wealth, the sign of the consumption response is signed by 1− REMV× EIS.

To understand the intuition behind this result, note that consumption increases in re-

sponse to increased continuation value if and only if εψ ≤ 1. When wealth effects are neutral

(i.e., ε = 1), this reduces to the familiar condition that ψ ≤ 1 that simply asks if consump-

tion today and tomorrow are gross complements. If they are gross complements, then the

gain in continuation utility from an increase in α induces additional consumption today as

the agent wishes to increase consumption today and utility tomorrow in tandem.

However, in general, wealth effects through the REMV complicate this relationship. If

the marginal value of wealth increases proportionally more in response to the shock to

10
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continuation values than the value of wealth, then ε > 1. In this case, the relative rise in the

marginal value of wealth makes saving more attractive. As a result, consumption today and

continuation value must now be sufficiently complementary to overcome this wealth effect

and consumption only increases today if ψ ≤ 1
ε
< 1.

For a concrete example, consider the effects of changes on interest rates on consumption

in our simple two-period example. Observe that Proposition 1 is a special case of Theorem

1 that sets v(w) = Rfw+ e2 and α = Rf . Since (4) and (9) are consistent with one another,

it follows that ε =
e1−c+e2/Rf

e1−c in the two period example coincides precisely with our general

definition of the REMV. Intuitively, when e2 > 0 and the consumer is a saver (e1−c > 0), we

have ε > 1 and wealth effects induced by changes in Rf are smaller relative to the case with

e2 = 0. This follows because the decrease in the present value of the endowment partially

offsets the benefits associated with saving at the higher interest rate.

Remark 2 (Consumption Responses to Discrete Changes in α). While expressed locally,

Theorem 1 can be used to provide robust comparative statics for consumption responses to

discrete changes in α. Concretely, suppose we want to know the consumption response to a

change in α from α0 to α1. If the environment is strongly regular, we have that

c(w, α1)− c(w, α0) =

∫ α1

α0

cα(w, s)ds.

Thus, by substituting (10) into the integral, we have a formula for the discrete change. Most

importantly, when the continuation value function is concave in wealth (vww ≤ 0), if we

know the sign of the function 1− ε(w, α)ψ(w, α) ≷ 0 for all α ∈ [α0, α1], then we know that∫ α1

α0
cα(w, s)ds ≷ 0, and therefore that c(w, α1) − c(w, α0) ≷ 0. Moreover, even changes in

objects with no obvious continuous counterpart can be parameterized in a smooth way by

α. Concretely, suppose that we want to understand the consumption effect of transitioning

from α0 to α1, we can always parameterize as

v(w, α) =
α− α0

α1 − α0

v(w, α1) +

(
1− α− α0

α1 − α0

)
v(w, α0)

and apply the above formulas. Thus, the global relationship of the product of the EIS and

REMV with unity is sufficient to sign the consumption response to discrete shocks. △

More broadly, even in cases where optimal consumption is not interior, while we can-

not characterize the response of consumption, we can still provide sufficient conditions for

globally monotone responses of consumption to α using techniques from the literature on

monotone comparative statics (Milgrom and Shannon, 1994). Indeed, under only the hy-

potheses that f is twice continuously differentiable, v is continuously differentiable, and vw is

11
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continuously differentiable in α, we obtain the following sufficient condition for every possible

optimal consumption function to be increasing in α.

Theorem 2. Suppose the environment (f, v) is regular. If

vw
v
fc
f

( vwα
vw
vα
v

+
vfvv
fv

)(
fcvf

fcfv

)−1

< 1, (11)

then any optimal c is increasing in α. Under the reverse inequality, any optimal c is decreas-

ing in α.

Proof. See Appendix A.3.

To understand condition (11), observe that consumption is increasing in α so long as

the LHS is bounded above by 1. The LHS is the product of three terms. The first is the

marginal value of wealth in units of the marginal value of consumption, which indexes the

value of wealth effects in consumption equivalent units. The second is the sum of the REMV

(now extended away from the optimum) and the curvature of the aggregator in continuation

value, which together index the size of wealth effects. Thus, the first two terms represent

the total wealth effect from global shocks to α.

The third and final term is the inverse of the normalized complementarity of consumption

and continuation value for the aggregator, which indexes the substitutability of consumption

and continuation values. This mimics the role of the EIS but does so globally instead of just

around the optimum. To see this, observe that when f(c, v) is of the Epstein-Zin form in

which the EIS is globally constant and equal to ψ, then

f(c, v) =
(
(1− β)c1−1/ψ + βv1−1/ψ

) 1
1−1/ψ =⇒

(
fcv(c, v)f(c, v)

fc(c, v)fv(c, v)

)−1

≡ ψ.

Hence, even away from the optimum where the EIS is defined, Theorem 2 provides an analo-

gous condition to that provided by Theorem 1: the product of wealth effects (represented by

an extended REMV) and substitution effects (represented by an extended EIS) must be less

than unity for consumption to increase in response to a positive continuation value shock.

3.3 Consumption Responses under Homotheticity

So far we have seen how the consumption response to a shock to continuation values depends

on both the EIS and REMV. Therefore, to isolate the role of the EIS, it is illustrative to

consider environments in which the REMV is known to equal one. The most natural and

commonly occurring such environments are ones which are homothetic.

12

Electronic copy available at: https://ssrn.com/abstract=2544688



Definition 4. An environment (f, v) is homothetic if f is homogeneous of degree one and

v is a strictly increasing, linear function, i.e., v(w, α) = g(α)w with g(α) > 0.

Under homotheticity, we know both that (1) the continuation value function is concave

in wealth as it is linear (vww = 0) and (2) the REMV is identically equal to unity (ε = 1).

Thus, in homothetic environments, the following Corollary of Theorem 1 characterizes the

sign of the consumption response to continuation value shocks in terms of the relationship

of the EIS to unity.

Corollary 1. If the environment (f, v) is homothetic and strongly regular, then

sgn

(
∂c

∂α

)
= sgn(1− ψ) (12)

Proof. See Appendix A.4.

The intuition for this result is, of course, that homotheticity makes wealth effects neutral.

To see this algebraically, observe that we can write the REMV under homotheticity as

ε =
vwα
vw
vα
v

=

g′(α)
g(α)

g′(α)w
g(α)w

= 1. (13)

In homothetic environments, we can similarly simplify the sufficient condition for the

consumption function to be monotone in α from Theorem 2:

Corollary 2. Suppose the environment (f, v) is homothetic and regular. If

1
w
fc
f

(
fcvf

fcfv

)−1

< 1,

then any optimal c is increasing in α. Under the reverse inequality, any optimal c is decreas-

ing in α.

Proof. See Appendix A.5.

This result exploits the neutrality of wealth effects and homogeneity of the aggregator.

Thus, under homotheticity, so long as the product of the marginal value of wealth in con-

sumption units and the extended notion of the EIS is less than one, any optimal consumption

function is increasing. For practical purposes, this can be checked by verifying the simpler

condition that 1
w
fv
fcv

< 1.
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4 Applications

In this section, we apply our comparative statics results to study how consumption responds

to various shocks in three applications to portfolio allocation problems, consumption-savings

problems, and entrepreneurial investment problems.

4.1 Risk, Ambiguity, and Investment

An investor is endowed with initial wealth w0 and receives no additional wealth in future

periods. Each period, they decide how to optimally invest their wealth wt. The set of feasible

portfolios at each time t is given by Θt. For each θ ∈ Θt, the random variable Rt+1(θ) yields

the gross return on invested wealth today. Thus, the total return on invested wealth is given

by wt+1 = Rt+1(θt)(wt− ct). The agent’s intertemporal aggregators are given by ft. We now

consider how shocks in this setting affect consumption and investment in environments with

certainty equivalence functionals that feature the potential for risk aversion and ambiguity

aversion.

4.1.1 Risk

To model risk aversion, we suppose that the certainty equivalence functional is given by the

standard quasi-arithmetic form,

Mt(U) = ϕ−1
t (Et [ϕt (U)]) , (14)

where ϕt : R+ → R is a strictly increasing and concave function.

We study the following five comparative statics to the agent’s preferences and investment

opportunities in this setting:

(1) Risk aversion increases: ϕt changes to ϕ̃t, where g = ϕ̃t ◦ϕ−1
t is increasing and concave.

(2) The investment opportunity set shrinks: Θt changes to Θ̃t ⊂ Θt.

(3) The portfolio returns become lower: {Rt+1(θ)}θ∈Θt changes to {R̃t+1(θ)}θ∈Θt where

Rt+1(θ) ⪰FOSD R̃t+1(θ) for all θ ∈ Θt

(4) The portfolio returns become riskier: {Rt+1(θ)}θ∈Θt changes to {R̃t+1(θ)}θ∈Θt where
Rt+1(θ) ⪰SOSD R̃t+1(θ) for all θ ∈ Θt

(5) Future consumption expenditure becomes less valuable: the aggregator shifts from ft+1

to f̃t+1 where f̃t+1(c, v) = ft+1(c/g(c, v), v), where g(c, v) ≥ 1 for all (c, v).

14
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Proposition 2. Comparative statics (1)–(3) and (5) lower the agent’s continuation value

function at all previous dates. If the agent’s value functions are concave, then comparative

static (4) lowers the agent’s continuation value function at all previous dates.

Proof. See Appendix A.6.

Thus, we can parameterize (1)–(5) by an arbitrary smooth transformation indexed by

α.10 It follows that when the environment is strongly regular, Theorem 1 immediately implies

that consumption decreases in response to any of these changes if and only if εψ ≤ 1.

As before, these comparative statics are complicated by the presence of wealth effects

through the REMV. However, under the following benchmark assumptions, the environment

is homothetic and ε = 1.

Lemma 1. The induced environments {(ft, vt)}t∈T are homothetic if

(1) the aggregators {ft}t∈T are weakly increasing, strictly quasi-concave, and homogeneous

of degree one,

(2) the certainty equivalent is of the CRRA form: ϕt(x) = x1−γt for γt ∈ R+/{1} and

ϕt(x) = log x for γt = 1,

(3) the sets of potential portfolios {Θt}t∈T are compact and returns {Rt+1(θ)}θ∈Θt,t∈T are

bounded, and

(4) the terminal utility is proportional to consumption uT (c) = bT c for some random vari-

able bT > 0.

Proof. See Appendix A.7.

Thus, under these conditions, increases in risk aversion, decreased investment opportu-

nities, lower and riskier returns, and lower future value to consumption all decrease con-

sumption if and only if ψ ≤ 1. As a concrete illustration, in Appendix A.7, we leverage this

result to provide an explicit solution for optimal consumption in the case where the agent

has Epstein-Zin preferences (Proposition 6).

Moreover, in Appendix A.7, we extend the environment in this section to allow for

stochastic death and (linear) bequest motives and show that Lemma 1 continues to hold

(Remark 4). Moreover, adverse shocks to the value of bequests reduce continuation value

functions. Thus, the response of the agent to increased estate taxes is to decrease contem-

poraneous consumption if and only if ψ ≤ 1.

10Recall by Remark 2 how this is possible even for discrete changes, such as changes in the investment
opportunity set.
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4.1.2 Ambiguity

We now study the consumption response to ambiguity in situations where a decision maker

considers multiple prior distributions over the state. To model such situations where the

decision maker is ambiguity-averse, we follow the approach to modelling ambiguity of Hayashi

and Miao (2011) and Ju and Miao (2012) and consider certainty equivalents of the form

Mt(U) = φ−1
t (Eµt [φt(ϕ−1

t (Eπt [ϕt(U)]))]), (15)

where ϕt and φt capture risk aversion and ambiguity aversion, respectively. Here πt ∈ Pt is
the subjective probability measure over the state space, and µt is the subjective probability

measure over the set of the underlying stochastic process Pt. When φt = ϕt, (15) reduces to

(14), where the expectation is taken over µt ◦ πt. If the agent is infinitely ambiguity averse,

then (15) reduces to:

Mt(U) = ϕ−1
t

(
min
πt∈Pt

Eπt [ϕt(U)]
)
,

which is the classical multi-priors model introduced by Gilboa and Schmeidler (1989) and

generalized to the intertemporal setting (without the separation of EIS from risk aversion) by

Epstein and Schneider (2003) and (with the three-way separation between EIS, risk aversion,

and ambiguity aversion) by Hayashi (2005).

In these settings, we consider the following two comparative statics:

(6) The agent becomes more ambiguity averse in the smooth environment: φt changes to

φ̃t, where g = φ̃t ◦ φ−1
t is increasing and concave.

(7) The agent considers more prior distributions in the infinitely ambiguity averse envi-

ronment: Pt changes to P̃t with P̃t ⊃ Pt.

Proposition 3. Comparative statics (6) and (7) lower the agent’s continuation value func-

tion at all previous dates.

Proof. See Appendix A.8.

Thus, once again, we can parameterize these changes by a smooth transformation indexed

by α. When the environment is strongly regular, Theorem 1 again immediately implies that

consumption decreases in response to any of these changes if and only if εψ ≤ 1.

4.2 Consumption-Savings Problems with Income Risk

An agent facing a stochastic income stream and a borrowing constraint decides how to

optimally save. The agent’s income in each period yt is the product of a permanent income
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component pt and an IID transitory income shock τt. Moreover, permanent income evolves

according to a geometric random walk with IID shocks ηt. The household can save its wealth

in a variety of portfolios θ ∈ Θt that yield random gross returns Rt+1(θ), which potentially

allow for both hedging labor income risk and investing in financial markets. The agent faces

a borrowing constraint such that ct ≤ wt.

The agent has quasi-arithmetic risk preferences with function ϕt and aggregates con-

sumption and continuation values according to ft. The household’s terminal utility function

is linear in consumption uT (cT ) = bT cT for bT > 0.

In the terminal period, the household’s value function is VT (wT , pT ) = bTwT . In all

previous periods, the value function is defined recursively by

Vt(wt, pt) = max
ct,wt+1,θt∈Θt

ft
(
ct, ϕ

−1
t (Et [ϕt (Vt+1(wt+1, pt+1))])

)
,

where

wt+1 = Rt+1(θt)(wt − ct) + yt+1,

yt = ptτt,

pt = pt−1ηt,

ct ≤ wt.

We study the following three comparative statics in this setting:

(8) The agent’s income permanent or transitory income falls: the distribution of τt, denoted

by Fτt , or ηt, denoted by Fηt , becomes F̃τt or F̃ηt with Fτt ⪰FOSD F̃τt or Fηt ⪰FOSD F̃ηt .

(9) The household’s investment or hedging opportunities shrink: Θt changes to Θ̃t ⊂ Θt.

(10) The agent’s income becomes riskier: the distribution of τt, denoted by Fτt , or ηt,

denoted by Fηt , becomes F̃τt or F̃ηt with Fτt ⪰SOSD F̃τt or Fηt ⪰SOSD F̃ηt .

Proposition 4. Comparative statics (8) and (9) lower the agent’s continuation value func-

tion at all previous dates. When the agent’s value functions are concave, comparative static

(10) lowers the agent’s continuation value function at all previous dates.

Proof. See Appendix A.9.

Thus, once more, we can parameterize these changes by a smooth transformation indexed

by α. When the environment is strongly regular, Theorem 1 again immediately implies that

consumption decreases in response to any of these changes if and only if εψ ≤ 1.

17

Electronic copy available at: https://ssrn.com/abstract=2544688



Of course, the REMV ε complicates the relationship between consumption responses

to shocks and the EIS. For example, a reduction in hedging opportunities can change the

marginal values of permanent income and wealth through a precautionary savings channel.

Nevertheless, under benchmark assumptions, we can derive an exact formula for the REMV.

Lemma 2. Suppose the agent’s aggregators {ft}t∈T are homogeneous of degree one and their

certainty equivalence functionals {Mt}t∈T are of the CRRA form. The REMV is given by

ε =
1 + p

w

vp
vw

1 + p
w

vpα
vwα

. (16)

Proof. See Appendix A.10.

This expression makes clear that while the REMV complicates the relationship between

consumption and the EIS, it does so precisely to the extent that permanent labor income

is relatively important to the household when compared to financial wealth. Indeed, for

households who have little permanent income relative to wealth (p/w ≈ 0), (16) implies

ε ≈ 1, and the consumption response is characterized by the relationship of the EIS with

unity. Indeed, structural estimates from Gourinchas and Parker (2002) suggest that the

behavior of older, high net worth households (a group that owns a large share of total financial

wealth overall) is primarily driven by life-cycle (bequest/retirement) motives, rather than

these precautionary concerns.

4.3 Entrepreneurial Investment

Understanding the consumption-savings behavior of entrepreneurs is critical to asset pricing

as business owners are vastly over-represented at the top of the wealth distribution (Smith,

Yagan, Zidar, and Zwick, 2019). Moreover, unlike households in models with exogenous

labor income, business owners’ earnings can plausibly respond to changes in investment op-

portunities, a feature which can more easily preserve homotheticity of the problem and thus

avoid some of the challenges posed by the REMV. To illustrate this, this section considers an

environment with an entrepreneur who decides how much to produce, consume and invest in

both her own capital stock and financial markets. Concretely, the agent has two investment

opportunities: (1) investing at dollars in portfolios θ ∈ Θt of risky financial assets with (ran-

dom) gross return Rt+1(θ) = 1 + rt+1(θ) and (2) purchasing capital kt at price Pkt, which is

subject to productivity (zt) and stochastic depreciation (δt) shocks.

The entrepreneur has access to the production technology

yt = ztgt(kt, lt),
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where gt is homogeneous of degree one, lt is the number of efficiency units of labor hired in

a competitive labor market at wage νt per efficiency unit, and kt is the firm’s capital stock,

which evolves according to

kt = (1− δt)kt−1 + it/Pkt.

Importantly, negative investment (i.e., liquidation of capital) is permitted.

Due to an unmodeled agency friction, the firm is only able to borrow bt ∈ [0, λ(Pktkt)]

one period debt at rate 1 + rb,t+1 for some constant λ ∈ (0, 1) and is otherwise unable to

raise external sources of financing.11 Stochastic depreciation shocks are uninsurable and hit

before investment decisions are made, exposing the agent to idiosyncratic business-specific

risk. Moreover, investment returns, profits, and changes in the value of the capital stock are

assumed to be taxed at a common capital tax rate τt.

Under these assumptions, the entrepreneur’s net worth evolves according to

wt+1 = at(1 + (1− τt+1)rt+1(θt)) + {(1− τt+1)Pk,t+1(1− δt+1) + τt+1Pkt}kt
+ (1− τt+1)[yt+1 − νt+1lt+1]− bt(1 + (1− τt+1)rb,t+1],

where financial assets at and bt are both weakly positive and we assume that all returns are

bounded. In addition, the entrepreneur faces the simple budget constraint

wt − ct = Pktkt − bt + at, (17)

so net worth, after consumption, is split between a portfolio of financial assets or the firm.12

The entrepreneur has CRRA preferences over risk:

Mt(U) =
(
Et
[
U1−γt

]) 1
1−γt

and the intertemporal aggregators {ft}t∈T are all weakly increasing, strictly quasi-concave

and homogeneous of degree one. These conditions ensure, in conjunction with the constant

11We assume for simplicity that the distribution of δt and changes in capital prices ensure that Pk,t+1(1−
δt+1) − λPktRb,t+1 > 0 and debt is default-free. Relaxing this comes at the expense of additional notation
and assumptions about what happens in case of default, but simple extensions with defaultable debt preserve
the homogeneity in net worth.

12Alternatively, we could consider the simpler environment where the entrepreneur rents the capital on a
period-by-period basis,

wt+1 = at(1 + (1− τt+1)rt+1(θt)) + (1− τt+1)[yt+1 − ϕt+1lt+1 − ϕkt+1kt+1],

where ϕk,t is the rental rate of capital, but the right hand side of the budget constraint is the same as (17)
except that kt = bt = 0. In this setting, increases in rental rates would also lower the agent’s continuation
value function.
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returns to scale on the production side of the model, that the environments faced by the

entrepreneur are homothetic.

Lemma 3. The induced environments {(ft, vt)}t∈T are homothetic.

Proof. See Appendix A.11.

With these ingredients in hand, we study how entrepreneur consumption and savings

respond to the following five comparative statics:

(11) The production technology becomes less productive: the distribution of zt, denoted by

Fzt , becomes F̃zt with Fzt ⪰FOSD F̃zt .

(12) Wage rates increase: the distribution of νt, denoted by Fνt , becomes F̃νt with Fνt ⪰FOSD

F̃νt .

(13) Depreciation rates increase: the distribution of δt, denoted by Fδt , becomes F̃δt with

Fδt ⪰FOSD F̃δt .

(14) Depreciation rates become riskier: Fδt becomes F̃δt with Fδt ⪰SOSD F̃δt .

(15) The capital tax rate increases: τt becomes τ̃t with τ̃t ≥ τt.

Proposition 5. Comparative statics (11)–(15) lower the agent’s continuation value function

at all previous dates.

Proof. See Appendix A.12.

Thus, as the environment is homothetic, it follows by Corollary 1 that consumption

decreases in response to any of these shocks if and only if ψ ≤ 1. This result underscores the

critical role of the EIS (and its relationship with unity) in structural asset pricing models

with entrepreneurs (see e.g., Di Tella, 2017).

5 Implications for Identification and Estimation of EIS

As we discussed in the introduction, the relationship between the EIS and unity is critical

for understanding various qualitative and quantitative properties of dynamic models in both

macroeconomics and finance. Moreover, there is no empirical consensus on the value of the

EIS. For example, Havranek et al. (2015) collect 2,735 estimates of EIS from 169 published

studies and find that the mean and standard deviation of published estimates of EIS from

33 articles in the top 5 economics journals are 0.5 and 1.4, respectively.
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Our main theoretical results can be expressed in more statistical language as sign-

identifying REMV × EIS − 1 from the sign of consumption responses to exogenous shocks.

Under homotheticity, the sign of consumption responses sign-identifies EIS−1. We can oper-

ationalize these theoretical results to provide a roadmap for applied researchers to empirically

estimate the sign of EIS− 1, and to point-identify the EIS under stronger assumptions.

First, without additional structural assumptions, our results clarify that the complica-

tions posed by the REMV generally prevent identification of the EIS from consumption

responses alone. This observation by itself provides a window for understanding why various

empirical strategies may fail to recover the EIS as either the shocks considered or popula-

tions of interest may have non-unit REMV. Thus, for this roadmap, we suppose that the

researcher is willing to assume that the agents’ problems are approximately homothetic.

Second, suppose that we have access to a dataset of individuals indexed by i, potentially

with a panel dimension indexed by t, that includes data on consumption cit, total finan-

cial wealth wit, and some aggregate or idiosyncratic shifters of investment opportunities or

preferences αt and αit.

Third, we can use our theoretical results to derive the following formula for the EIS:

Corollary 3. Suppose that the environment is homothetic and strongly regular.13 If we have

a shifter x ∈ {αt, αit} of the marginal value of wealth git(αt, αit), then

ψit = 1−
∂ log

cit
wit−cit
∂x

∂ log git
∂x

.

Proof. See Appendix A.13.

This suggests an instrumental-variables-like empirical strategy that is valid for an ar-

bitrary shifter of investment opportunities with the numerator
∂ log

cit
wit−cit
∂x

representing the

reduced form and the denominator ∂ log git
∂x

representing the first stage.

Fourth, this strategy can be operationalized. If we are willing to assume that ψit de-

pends on some set of observable characteristics, one could estimate the reduced-form elas-

ticity
∂ log

cit
wit−cit
∂x

directly from the data within groups with the same (or sufficiently similar)

observables. If we can also estimate the magnitude of the first stage ∂ log git
∂x

, then EIS is

point-identified. This could be achieved by finding shocks and settings in which ∂ log git
∂x

is

known or estimable. For example, within the setting of our portfolio allocation application,

in Appendix A.7 we provide a formula for g in terms of the agent’s aggregator, their risk

aversion, and the investment opportunities available to them. Under structural assumptions

on these objects, ∂ log git
∂x

is obtainable, and point-identification can be achieved.

13Homotheticity is in the sense of Definition 4 and strong regularity is in the sense of Definition 1.
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However, even when this is not feasible, the researcher can still sign-identify ψit−1 if they

are willing to assume the sign of ∂ log git
∂x

based on knowledge of the shock under consideration.

Concretely, suppose without loss of generality that ∂ log git
∂x

> 0. Then we have that:

sgn

(
∂ log cit

wit−cit
∂x

)
= sgn(1− ψit)

and the sign of the consumption response identifies the relationship of the EIS with unity.

This strategy is, however, subject to the following two caveats. First, it relies on the as-

sumption that the REMV is known to equal one. As a result, it is likely to be most applicable

to populations for which permanent income from human capital is relatively unimportant

relative to financial wealth (in line with Lemma 2). Otherwise precautionary savings mo-

tives may induce non-unit REMV and prevent identification. For example, if changes in

investment opportunities take place alongside changes in labor income risk and permanent

income is non-negligible relative to financial wealth, then the REMV will not equal one.

Consequently, this strategy is likely to apply to older and wealthier groups of households –

which make up the bulk of participants in financial markets – but may struggle to identify

the EIS for younger and poorer households.

Nevertheless, even when labor income risk makes the REMV non-unitary, we can extend

the above strategy to identify the value of value of EIS−1 under certain conditions. Lemma

2 implies that the REMV is greater than one if and only if the elasticity of the marginal

value of wealth exceeds the elasticity of the marginal value of permanent income.14 Thus,

if we observe a decrease in consumption in response to an adverse shock to investment

opportunities and we are willing to suppose the previous condition holds, then we know

that ψ ≤ 1/ε ≤ 1. Hence, a researcher can leverage their knowledge of the shock under

consideration (perhaps through the lens of a structural model) to provide bounds on the

REMV that allow set identification of the EIS from the sign of consumption responses alone.

Second, households must actually perceive and act upon the shocks, so that they are

relevant and the first stage is non-zero. If households are inattentive (or otherwise cognitively

constrained) or face large adjustment costs, it is possible that the shocks identified by the

researcher may not influence household behavior, preventing identification. There are at

least two possibilities to overcome this limitation: the researcher could verify by a direct

survey that a household is aware of the shock under consideration; or they could consider

large shocks which are likely to have large costs to ignore.

14Mathematically speaking, Lemma 2 implies that: ε ≥ 1 ⇐⇒ 1 ≥ vpα/vp

vwα/vw
.
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6 Conclusion

In this paper, we study consumption-savings problems with general recursive preferences. We

characterize the sign of the consumption responses to arbitrary shocks in terms of whether

the product of two sufficient statistics, the EIS and the REMV, is greater or less than one. In

homothetic environments, the REMV is always one, and the sign of consumption responses

is characterized solely by the relationship of the EIS with unity. This allows us to derive

a range of comparative statics in applications to portfolio allocation, consumption-savings

problems with income risk, and entrepreneurial investment.

In more empirical language, our results sign-identify EIS − 1 with the sign of the con-

sumption response to a variety of shocks under homotheticity. This is important for two

reasons. First, this relationship is critical for the qualitative and quantitative predictions

of dynamic models in macroeconomics and finance as well as their normative implications.

Second, there is a large amount of uncertainty regarding this relationship empirically. Fi-

nally, under additional structural assumptions, our formulae for the consumption responses

to shocks can be used to identify the EIS even when homotheticity fails.

Appendices

A Omitted Proofs

A.1 Proof of Proposition 1

Proof. The agent’s problem can be stated as:

max
c,v∈R+

f(c, ρv) subject to v = Rf (e1 − c) + e2.

As we have assumed an Inada condition on f , we can ignore non-negativity constraints. The

following first-order condition is therefore necessary for optimality:

fc(c, ρRf (e1 − c) + ρe2)− ρRffv(c, ρRf (e1 − c) + ρe2) = 0.

Applying the implicit function theorem, we can compute:

d log
(
c
v

)
dρ

=

∂c
∂ρ

c
−
Rf (e1 − c) + e2 −Rf

∂c
∂ρ

Rf (e1 − c) + e2
,

d log
(
fc
fv

)
dρ

= 1,
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d log
(
c
v

)
dRf

=

∂c
∂Rf

c
−

−Rf
∂c
∂Rf

+ (e1 − c)

Rf (e1 − c) + e2
,

d log
(
fc
fv

)
dRf

=
1

Rf

.

Thus, by the definition of the EIS, rearranging yields:(
1

c
+

Rf

Rf (e1 − c) + e2

)
∂c

∂ρ
= 1− ψ,(

1

c
+

Rf

Rf (e1 − c) + e2

)
∂c

∂Rf

=
1

Rf

(
Rf (e1 − c)

Rf (e1 − c) + e2
− ψ

)
.

Substituting the definition of ε completes the proof.

A.2 Proof of Theorem 1

Proof. By regularity, f and v are twice continuously differentiable. Moreover, [0, w] is com-

pact. Thus, by the extreme value theorem we have that the maximum is attained and the

agent solves:

max
c∈[0,w]

f(c, v(w − c, α)). (18)

By strong regularity c = c(w, α) ∈ (0, w). Thus, any optimal c solves the first-order condition

fc(c, v(w − c, α))− vw(w − c, α)fv(c, v(w − c, α)) = 0. (19)

Thus, suppressing all arguments, we can compute:

d

dα
log

(
fc
fv

)
=

d

dα
log vw =

vwα − vwwcα
vw

, (20)

where all partial derivatives here exist by the hypothesis of strong regularity. In particular,

the partial derivative of c with respect to α (which was not assumed to exist) obtains by

application of the implicit function theorem with respect to (19). We can moreover compute

d

dα
log
( c
v

)
=
cα
c
− −vwcα + vα

v
. (21)

By (20), (21), and the definition of EIS in (7), we have

−ψ =
cα
c
− −vwcα+vα

v
vwα−vwwcα

vw

,
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which is equivalent to(
1

c
+
vw
v

− ψ
vww
vw

)
cα =

vα
v

(
1−

vwα
vw
vα
v

ψ

)
=
vα
v
(1− εψ),

where the final equality follows by the definition of the REMV. The final claim that (9) holds

when vww ≤ 0 follows immediately by noting that vw ≥ 0 and ψ ≥ 0.

A.3 Proof of Theorem 2

Proof. By regularity, the agent faces problem (18). Define the function f̃(c, α) = f(c, v(w−
c, α)). The constraint set [0, w] is a lattice and does not depend on α. Furthermore, α ∈ [0, 1],

which is a totally ordered set. As c ∈ R+, f̃ is quasi-supermodular in c. Thus, if f̃ satisfies

the strict single-crossing property in (c, α), then by Theorem 4’ in Milgrom and Shannon

(1994), any optimal consumption function must be increasing in α. By the hypothesis of

regularity, f̃ is twice continuously differentiable. Thus, the strict supermodularity condition

f̃cα > 0 is sufficient for the strict single-crossing property. Taking partial derivatives, this

can be expressed as

f̃cα = (fvc − fvvvw) vα − fvvαw > 0,

which is equivalent to

fcv >
vwα
vα

fv + vwfvv =
vw
v

vwα
vw
vα
v

fv +
vw
v
vfvv. (22)

If well defined, we can rewrite (22) as

1 >
vw
v

( vwα
vw
vα
v

fv + vfvv

)
f−1
cv =

vw
v

( vwα
vw
vα
v

+
vfvv
fv

)
fv
fcv

=
vw
v
fc
f

( vwα
vw
vα
v

+
vfvv
fv

)
fcfv
fcvf

=
vw
v
fc
f

( vwα
vw
vα
v

+
vfvv
fv

)(
fcvf

fcfv

)−1

,

completing the proof.

A.4 Proof of Corollary 1

Proof. The consumption response is given by (10). As v(w) = g(α)w, we have that vw
v
= 1

w−c ,
vα
v
= gα

g
> 0, vww = 0, and ε = 1. Thus:(

1

c
+

1

w − c

)
cα =

gα
g
(1− ψ) (23)
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and (12) follows immediately by noting that gα, g > 0.

A.5 Proof of Corollary 2

Proof. By Theorem 2, we have that any possible consumption function is increasing in α

if (11) holds. Under homotheticity, by (13), we have that
vwα
vw
vα
v

= 1. Moreover, vw
v

= 1
w−c .

Further, by homogeneity (of degree one) of the aggregator and Euler’s theorem we have that

f = cfc + vfv. This implies that fvv = − c
v
fcv. Substituting these observations yields

vw
v
fc
f

( vwα
vw
vα
v

+
vfvv
fv

)(
fcvf

fcfv

)−1

=
1

w − c

(
fc
f

)−1
(
1 +

v
(
− c
v
fcv
)

fv

)(
fcvf

fcfv

)−1

=
1

w − c

(
1− c

fcv
fv

)(
fcv
fv

)−1

=
1

w − c

(
fv
fcv

− c

)
.

Hence, the sufficient condition (11) becomes

1

w − c

(
fv
fcv

− c

)
< 1.

Rewriting this yields

1 >
1

w

fv
fcv

=
1
w
fc
f

fcfv
fcvf

=
1
w
fc
f

(
fcvf

fcfv

)−1

,

Completing the proof.

A.6 Proof of Proposition 2

Proof. By definition, vt(w) = maxθ∈Θt ϕ
−1
t (Et [ϕt (Vt+1(w

′))]), with w′ = Rt+1(θ)w. We

prove the five comparative statics in turn.

(1) Risk aversion increases: ϕt changes to ϕ̃t, where g = ϕ̃t ◦ϕ−1
t is increasing and concave.

See that we can write:

ϕ̃t(ṽt(w)) = max
θt∈Θt

Et
[
ϕ̃t (Vt+1(w

′))
]
= max

θt∈Θt
Et [g ◦ ϕt (Vt+1(w

′))]

≤ max
θt∈Θt

g (Et [ϕt (Vt+1(w
′))]) = g

(
max
θt∈Θt

Et [ϕt (Vt+1(w
′))]

)
= g ◦ ϕt(vt(w)) = ϕ̃t(vt(w)),

where the inequality follows by Jensen’s inequality. This implies that ṽt(w) ≤ vt(w).
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(2) The investment opportunity set shrinks: Θt changes to Θ̃t ⊂ Θt. See that:

ṽt(w) = max
θ∈Θ̃t

ϕ−1
t (Et [ϕt (Vt+1(w

′))]) ≤ max
θ∈Θt

ϕ−1
t (Et [ϕt (Vt+1(w

′))]) = vt(w)

(3) The portfolio returns become lower: {Rt+1(θ)}θ∈Θt changes to {R̃t+1(θ)}θ∈Θt where

Rt+1(θ) ⪰FOSD R̃t+1(θ) for all θ ∈ Θt. We can write:

ϕt(ṽt(w)) = max
θ∈Θt

Et
[
ϕt

(
Vt+1(R̃t+1(θ)w)

)]
= Et

[
ϕt

(
Vt+1(R̃t+1(θ̃

∗)w)
)]

≤ Et
[
ϕt

(
Vt+1(Rt+1(θ̃

∗)w)
)]

≤ max
θ∈Θt

Et [ϕt (Vt+1(Rt+1(θ)w))]

= ϕt(vt(w)), (24)

where the first inequality follows as Rt+1(θ) ⪰FOSD R̃t+1(θ) for all θ ∈ Θt, ϕt is increas-

ing, Vt+1 is increasing in wealth, and the second by the definition of the maximum.

(4) The portfolio returns become riskier: {Rt+1(θ)}θ∈Θt changes to {R̃t+1(θ)}θ∈Θt where
Rt+1(θ) ⪰SOSD R̃t+1(θ) for all θ ∈ Θt. This follows by exactly the same chain of

inequalities as (24), but where the first inequality follows as as Rt+1(θ) ⪰SOSD R̃t+1(θ)

for all θ ∈ Θt, ϕt is concave and Vt+1 is concave by hypothesis.

(5) Future consumption expenditure becomes less valuable: the aggregator shifts from ft+1

to f̃t+1 where f̃t+1(c, v) = ft+1(c/g(c, v), v), where g(c, v) ≥ 1 for all (c, v). We can

write the period t+ 1 value function as

Ṽt+1(w) = max
c∈[0,w]

f̃t+1(c, vt+1(w − c))

= max
c∈[0,w]

ft+1

(
c

g(c, vt+1(w − c)
, vt+1(w − c)

)
= ft+1

(
c∗

g(c∗, vt+1(w − c∗))
, vt+1(w − c∗)

)
≤ ft+1 (c

∗, vt+1(w − c∗))

≤ max
c∈[0,w]

ft+1(c, vt+1(w − c)) = Vt+1(w).

Thus, we have that

ṽt(w) = max
θ∈Θt

ϕ−1
t

(
Et
[
ϕt

(
Ṽt+1(w

′)
)])

≤ max
θ∈Θt

ϕ−1
t (Et [ϕt (Vt+1(w

′))]) = vt(w).
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A.7 Proof of Lemma 1, Explicit Epstein-Zin solution, and Exten-

sion to Death with Bequests

We first prove Lemma 1.

Proof. To show that the induced environments are homothetic, by Definition 4 we need to

show that: ft is homogeneous of degree one and that v(w, α) = g(α)w with g > 0. We have

the first of these by assumption. Thus, it suffices to show the second. We do this by first

establishing that Vt(w) = btw for some random variables bt for all t ∈ T . To this end, observe

in period T that uT (cT ) = bT cT for bT > 0. Thus, we have that VT (w) = bTw. Proceeding

inductively, suppose that Vt+1(w) = bt+1w for some bt+1 > 0. We have that

Vt(w) = max
c∈[0,w],θ∈Θt

ft

(
c,Et

[
Vt+1 (Rt+1(θ)(w − c))1−γt

] 1
1−γt

)
= max

c∈[0,w],θ∈Θt
ft

(
c,Et

[
(bt+1Rt+1(θ)(w − c))1−γt

] 1
1−γt

)
= max

c∈[0,w]
ft

(
c,max

θ∈Θt
Et
[
(bt+1Rt+1(θ)(w − c))1−γt

] 1
1−γt

)
= max

c∈[0,w]
ft

(
c, (w − c)max

θ∈Θt
Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt

)
= max

c̃∈[0,1]
wft

(
c̃, (1− c̃)max

θ∈Θt
Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt

)
= w max

c̃∈[0,1]
ft

(
c̃, (1− c̃)max

θ∈Θt
Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt

)
= btw,

where

bt = max
c̃∈[0,1]

ft

(
c̃, (1− c̃)max

θ∈Θt
Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt

)
> 0. (25)

The first line is by definition. The second is by the induction hypothesis. The third

follows as ft is upper semi-continuous, the set of portfolios is compact, and returns are

bounded. The fourth follows by identity. The fifth follows by homogeneity of degree one of

ft. The sixth is by identity. The seventh is by definition. To complete the proof, we now

observe that this implies linearity of the continuation value functions in wealth:

vt(w) = max
θ∈Θt

Et
[
Vt+1 (Rt+1(θ)w)

1−γt] 1
1−γt

= max
θ∈Θt

Et
[
(bt+1Rt+1(θ)w)

1−γt] 1
1−γt

= wmax
θ∈Θt

Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt
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Thus, if we set g(α) = maxθ∈Θt Et
[
(bt+1Rt+1(θ))

1−γt] 1
1−γt > 0, we are done.

We now use this Lemma to derive an explicit solution for the consumption function when

the agent has Epstein-Zin preferences.

Proposition 6. With Epstein-Zin preferences, the optimal consumption function is

ct(w) = (1− β)ψb1−ψt w,

where bt is defined recursively by

bt =


(
(1− β)ψ + βψ

(
maxθ∈Θt Et

[
(bt+1Rt+1(θ))

1−γ] 1
1−γ
)ψ−1

) 1
ψ−1

, ψ ̸= 1,

(1− β)1−βββ
(
maxθ∈Θt Et

[
(bt+1Rt+1(θ))

1−γ] 1
1−γ
)β
, ψ = 1.

Proof. Nearly identical to Toda (2014, Corollary 7).

We now provide conditions under which there is a unique optimal portfolio (Remark 3)

and extend Lemma 1 to allow for death and bequest motives (Remark 4).

Remark 3. Since by assumption the aggregator f is strictly quasi-concave, the optimal

consumption rule c̃t is unique. If the portfolio set is Θt finite or convex and there are no

redundant assets, then the optimal portfolio is unique. △

Remark 4. Here, we extend the model to incorporate stochastic death and bequests. In

each period t < T , if still alive, the agent dies with probability δt. In period t = T , if the

agent is still alive, the agent dies for sure. If the agent dies with wealth w in period t, then

their terminal utility function over bequests is of the form udt(w) = bdt(w) for some random

variable bdt > 0. In this case, the Bellman equation becomes

Vt(w) = max
c∈[0,w],θ∈Θt

ft

(
c,
[
δtEt

[
(bd,t+1Rt+1(θ)(w − c))1−γt

]
+ (1− δt)Et

[
Vt+1(Rt+1(θ)(w − c))1−γt

] ] 1
1−γt

)
.

The extension of Lemma 1 to this case is immediate. It is also a straightforward extension of

Proposition 2 that adverse changes in the distribution of bd,t+1 in the sense of second-order

stochastic dominance reduce the continuation value function at all previous dates. △
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A.8 Proof of Proposition 3

Proof. We prove the two comparative statics in turn.

(6) The agent becomes more ambiguity averse in the smooth environment: φt changes to

φ̃t, where g = φ̃t ◦ φ−1
t is increasing and concave. We can express the continuation

value function as

φ̃t(ṽt(w)) = max
θ∈Θt

Eµt [φ̃t(ϕ−1
t (Eπt [ϕt(Vt+1(w

′))]))],

where w′ = Rt+1(θ)w. Hence, application of the same steps as in the proof of compar-

ative static (1) in Proposition 2 yields the result.

(7) The agent considers more prior distributions in the infinitely ambiguity averse envi-

ronment: Pt changes to P̃t with P̃t ⊃ Pt. As the minimization under P̃t is taken over

a larger set, we have that

ṽt(w) = max
θ∈Θt

ϕ−1
t

(
min
πt∈P̃t

Eπt [ϕt(Vt+1(w
′))]

)
≤ max

θ∈Θt
ϕ−1
t

(
min
πt∈Pt

Eπt [ϕt(Vt+1(w
′))]

)
= vt(w).

A.9 Proof of Proposition 4

Proof. Observe that the continuation value function in this instance is given by

vt(w; p) = max
θ∈Θt

ϕ−1
t (Et [ϕt (Vt+1 (Rt+1(θ)w + pτt+1ηt+1))]) .

We prove the three comparative statics in turn.

(8) The agent’s income permanent or transitory income falls in the sense of FOSD. Ob-

serve that under either of these changes that the distribution of the random variable

Rt+1(θ)w + pτt+1ηt+1 falls in the sense of FOSD. Thus, the same steps as in the proof

of comparative static (3) in Proposition 2 establish the result.

(9) The household’s investment or hedging opportunities shrink: Θt changes to Θ̃t ⊂ Θt.

The same steps as in the proof of comparative static (2) in Proposition 2 establish the

result.

(10) The agent’s income becomes riskier in the sense of SOSD. Observe that under either of

these changes that the distribution of the random variable Rt+1(θ)w + pτt+1ηt+1 falls
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in the sense of SOSD. Thus, the same steps as in the proof of comparative static (4)

in Proposition 2 establish the result.

A.10 Proof of Lemma 2

Proof. To show this result, we first establish that the continuation value functions {vt}t∈T
are homogeneous of degree one. We do this by backward induction. Consider the terminal

period T . We have that VT (w, p) = uT (w) = bTw, which is homogeneous of degree one. By

the definition of the continuation value function in period T − 1, we have

vT−1(λw, λp) = max
θ∈ΘT−1

ET−1

[
VT (RT (θ)λw + λpτTηT , λpτTηT )

1−γT−1
] 1

1−γT−1

= max
θ∈ΘT−1

ET−1

[
λ1−γT−1VT (RT (θ)w + pτTηT , pτTηT )

1−γT−1
] 1

1−γT−1

= λvT−1(w, p).

Thus, vT−1 is homogeneous of degree one.

Proceeding inductively, suppose that vt is homogeneous of degree one. We wish to show

that vt−1 is homogeneous of degree one. We first show that Vt is homogeneous of degree one:

Vt(λw, λp) = max
c∈[0,λw]

ft (c, vt(λw − c, λp))

= max
c∈[0,λw]

κft

(
c

κ
,
vt(λw − c, λp)

κ

)
= κ max

c∈[0,λw]
ft

(
c

κ
, vt

(
λw − c

κ
,
λp

κ

))
= λ max

c∈[0,λw]
ft

(
c

λ
, vt

(
λw − c

λ
,
λp

λ

))
= λ max

c̃∈[0,w]
ft (c̃, vt (w − c̃, p))

= λVt(w, p),

where the first equality is by definition, the second is by homogeneity of degree one of ft,

the third is by homogeneity of degree one of vt, the fourth is by setting κ = λ, the fifth is

by defining c̃ = c
λ
, and the last is by the definition of the value function.
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We now use this fact to show that vt−1 is homogeneous of degree one. Note that

vt−1(λw, λp) = max
θ∈Θt−1

Et−1

[
Vt (Rt(θ)λw + λpτtηt, λpτtηt)

1−γt−1
] 1

1−γt−1

= max
θ∈Θt−1

Et−1

[
λ1−γt−1Vt (Rt(θ)w + pτtηt, pτtηt)

1−γt−1
] 1

1−γt−1

= λvt−1(w, p).

We now use this to derive the claimed formula for the REMV. By Euler’s theorem, we have

that v = vww + vpp. Thus, we have the required expression

ε =
∂ log vw
∂α

∂ log v
∂α

=
vwα
vw

vww + vpp

vwαw + vpαp
=

1 + p
w

vp
vw

1 + p
w

vpα
vwα

.

A.11 Proof of Lemma 3

Proof. We can re-express the model as the same as the one we developed in Section 4.1.1.

Once this is done, the result follows by verifying the hypotheses of Lemma 1. Define θ̃t =

(θt, at, bt, kt) ∈ Θ̃t and observe that we can write

wt+1 = Rt+1(θ̃t)(wt − ct),

where we have simplified away yt+1 and lt+1 by observing that any optimal lt+1 is pinned

down immediately by kt+1, gt+1, νt+1, zt+1 by solving the cost minimization problem. Thus,

the model reduces to our portfolio allocation problem. Moreover, the aggregator is CRRA,

terminal utility is linear, ft is increasing, strictly quasi-concave and homogeneous of degree

one. The returns are moreover bounded and Θ̃t is compact. Thus, Lemma 1 yields the

result.

A.12 Proof of Proposition 5

Proof. Observe by the proof of Lemma A.11 that the continuation value function can be

re-expressed in the form of the homothetic case of the model from Section 4.1.1. Thus, by

Lemma 1, we have that

vt(w) = btw,

where bt is given by (25). We now prove the five comparative statics in turn.

(11) The production technology becomes less productive in the sense of FOSD. This follows

by observing that this reduces returns and the same steps as comparative static (3) in
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the proof of Proposition 2.

(12) Wage rates increase in the sense of FOSD. This follows by the same argument as (11).

(13) Depreciation rates increase in the sense of FOSD. This follows by the same argument

as (11).

(14) Depreciation rates become riskier in the sense of SOSD. This increases the riskiness of

returns and follows by the same argument as comparative static (4) in Proposition 2.

(15) The capital tax rate increases. This follows by the same argument as (11).

A.13 Proof of Corollary 3

Proof. By (23) in the proof of Corollary 1, we have(
1

c
+

1

w − c

)
cα =

gα
g
(1− ψ).

Observing that the LHS is simply
∂ log c

w−c
∂α

and gα
g
= ∂ log g

∂α
, the result follows immediately.

B Sufficient Conditions for Strong Regularity

The conditions for (strong) regularity require primitive conditions on f as well as non-

primitive conditions on v and c. In this Appendix, we provide verifiable conditions on the

setting {uT , (Ω,F , P ), {ft,Mt,Θt,Wt}t∈T } such that the induced environments {(ft, vt)}t∈T
are strongly regular. These take the form of technical restrictions on the probability space

with respect to which random variables are defined and standard interiority and smoothness

conditions on the evolution of wealth and both intratemporal and intertemporal aggregation.

Definition 5. A setting {uT , (Ω,F , P ), {ft,Mt,Θt,Wt}t∈T } is discrete, interior, and smooth

(DIS) if

(1) the state space Ω is discrete,

(2) all intertemporal aggregators {ft}t∈T and the terminal utility function uT are strictly

increasing, infinitely continuously differentiable, normalized in the sense that ft(0, 0) =

uT (0) = 0, and satisfy the Inada conditions that limc→0 ftc(c, v) = ∞, limv→0 ftv(c, v) =

∞, and limc→0 uTc(c) = ∞,
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(3) the certainty equivalence functionals {Mt}t∈T are infinitely continuously differentiable15

and normalized in the sense that Mt (0) = 0, and

(4) the spaces of portfolios {Θt}t∈T are discrete, and the continuation wealth functions

{Wt(·, θ)}t∈T ,θ∈Θt are infinitely continuously differentiable and normalized in the sense

that Wt(0, θ) = 0.

These conditions allow an inductive proof that the environments are strongly regular

starting from the terminal period. This allows us to show that the continuation value func-

tions inherit normalization properties (which imply Inada conditions hold, ensuring inte-

riority) and are twice continuously differentiable (in fact, they are infinitely continuously

differentiable).16

Lemma 4. If the setting {uT , (Ω,F , P ), {ft,Mt,Θt,Wt}t∈T } is DIS, then the induced envi-

ronments {(ft, vt)}t∈T satisfy the following properties:

(1) vt is continuously differentiable in wealth.

(2) vt is almost everywhere (with respect to wealth) infinitely continuously differentiable in

wealth.

(3) Any optimal consumption function is interior.

Proof. When the setting is DIS, we have that Ω is discrete. Denote a particular state

ωt at date t and let the set of all states at each date t be Ωt. Any random variable

representing continuation values Vt+1(Wt+1(w, θ)) can then be associated with the vector

{Vt+1(Wt+1(w, θ;ωt);ωt)}ωt∈Ωt . Thus, we can express the certainty equivalence functional in

the following form for all t ∈ T :

Mt(Vt+1(w)) = gt ({Vt+1(Wt+1(w, θ;ωt);ωt)}ωt∈Ωt) .

Moreover, by the hypothesis of infinitely continuous differentiability, this representation is

such that gt : R|Ωt| → R is infinitely continuously differentiable for all t ∈ T . Finally, by the

normalization property of Mt, we have that gt(0) = 0 for all t ∈ T .

We now establish properties of the environment by backward induction. We begin with

period T , where

VT (w;ωT ) = uT (w;ωT )

15As the state space is discrete, the random variables for continuation utility take finite values so differ-
entiability of Mt is in the standard sense.

16To obtain twice continuous differentiability, the hypotheses of infinite continuous differentiability in the
DIS assumption can be weakened to finite but large times continuous differentiability.
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is infinitely continuously differentiable by the hypothesis that uT is infinitely continuously

differentiable. Thus

vT−1(w) = max
θ∈ΘT−1

gT−1 ({VT (WT (w, θ;ωT );ωT )}ωT∈ΩT ) ,

where the maximum is attained by compactness of ΘT−1 and infinite continuous differentia-

bility of gT−1, VT and WT . Moreover, by the envelope theorem (Milgrom and Segal, 2002,

Theorem 2), we have that vT−1 is continuously differentiable. Furthermore, by discreteness of

ΘT−1, vT−1 is almost everywhere infinitely continuously differentiable. Finally, vT−1(0) = 0

as gT−1(0) = 0, WT (0, θ) = 0 and VT (0) = uT (0) = 0.

Now suppose that vt is continuously differentiable, almost everywhere infinitely continu-

ously differentiable, and vt(0) = 0 for t ≤ T − 1. We wish to show that vt−1 is continuously

differentiable, almost everywhere infinitely continuously differentiable, and vt−1(0) = 0. We

observe that (suppressing the state ωt)

Vt(w) = max
c∈[0,w]

ft (c, vt(w − c)) .

By the assumed Inada conditions and the fact that vt(0) = 0, we have that any optimal ct(w)

is interior. Moreover, by differentiability of vt and ft, a necessary condition for optimality is

that

ftc(c(w), vt(w − c(w)))− vtw(w − c(w))ftv(c(w), vt(w − c(w))) = 0.

Applying the implicit function theorem to this equation, which is possible almost every-

where by almost everywhere infinite differentiability of ft and vt, reveals that ct(w) is almost

everywhere infinitely continuously differentiable. Thus,

Vt(w) = ft (ct(w), vt(w − ct(w)))

is almost everywhere infinitely continuously differentiable. As gt−1 and Wt are infinitely

continuously differentiable, it follows that vt−1 is almost everywhere infinitely continuously

differentiable. Moreover, by applying the envelope theorem, vt−1 is continuously differen-

tiable.

Finally, as vt(0) = 0, if w = 0, then Vt(0) = ft(0, vt(0)) = ft(0, 0) = 0, where the final

equality follows by the assumed normalization condition on ft. Thus

vt−1(0) = Mt (Vt(Wt(0))) = Mt (0) = 0

by the assumed normalization conditions on Mt and Wt.
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We have now established the required properties for all t ∈ T .

Thus, if we assume that the setting is DIS and choose a smooth parameterization for α

(recall by Remark 2 that this is always possible), then Lemma 4 implies that strong regularity

holds for almost all levels of wealth.

This Lemma is useful as it allows one to verify the (strong) regularity hypotheses of

Theorems 1 and 2 directly in terms of deep model primitives. Concretely, consider our

investment under risk application from Section 4.1.1. We need only assume that the space

of portfolios is discrete and that ϕt is smooth to ensure strong regularity. Similar weak

regularity conditions on primitives can be found for our other applications.
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